Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 4649
1.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 3 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби .

2.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 2,3 плюс 0,7: левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 7 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 14 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 0,1 конец дроби .

1) 37
2) 60
3) 0,6
4) 0,37
5) 3,7
3.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

4.  
i

В ос­но­ва­нии пря­мой че­ты­рех­уголь­ной приз­мы ABCDA1B1C1D1 лежит тра­пе­ция ABCD, у ко­то­рой ∠C = 90°, BC и AD  — ос­но­ва­ния, BC = CC1. Плос­кость, ко­то­рая про­хо­дит через ребро DC и вер­ши­ну A1 приз­мы, об­ра­зу­ет угол  альфа = арк­тан­генс дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби с плос­ко­стью ос­но­ва­ния (см. рис.) и от­се­ка­ет часть NC1CA1D1D. Если объем приз­мы равен 48, то объем остав­шей­ся части равен … .

5.  
i

В окруж­ность ра­ди­у­сом 6 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 6 и 10. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.

6.  
i

Среди чисел  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 3 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ; минус 3; минус 0,3; ко­рень из 3 вы­бе­ри­те число, про­ти­во­по­лож­ное числу 3.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
2) 3 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
3)  минус 3
4)  минус 0,3
5)  ко­рень из 3
7.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 50. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

8.  
i

Если 16% не­ко­то­ро­го числа равны 24, то 60% этого числа равны:

1) 84
2) 87
3) 93
4) 40
5) 90
9.  
i

Вы­со­ты ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка ABC (AB  =  BC) пе­ре­се­ка­ют­ся в точке O. Если вы­со­та AD  =  16 и AO  =  12, то длина сто­ро­ны AC равна:

1) 20
2) 8 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
3) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
4) 18
5) 12 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
10.  
i

Если  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 :x= целая часть: 2, дроб­ная часть: чис­ли­тель: 22, зна­ме­на­тель: 27 : целая часть: 1, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 9   — вер­ная про­пор­ция, то число x равно:

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
2)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 44
3) 2
4)  целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
5) 4
11.  
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что ∠AOC = 127°, ∠BOM = 153°. Най­ди­те ве­ли­чи­ну угла BOC.

1) 37°
2) 27°
3) 63°
4) 53°
5) 100°
12.  
i

Даны квад­рат­ные урав­не­ния:

Ука­жи­те урав­не­ние, ко­то­рое не имеет кор­ней.

1) 3x в квад­ра­те плюс 12x плюс 12=0
2) 7x в квад­ра­те минус 3x минус 2=0
3) 5x в квад­ра­те плюс 10x плюс 5=0
4) 12x в квад­ра­те плюс 4x плюс 5=0
5) 2x в квад­ра­те минус 3x минус 5=0
13.  
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N  =  128°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.

1) 64 гра­ду­сов
2) 128 гра­ду­сов
3) 90 гра­ду­сов
4) 180 гра­ду­сов
5) 52 гра­ду­сов
14.  
i

Ре­ше­ни­ем не­ра­вен­ства

 дробь: чис­ли­тель: 46, зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: 2x в квад­ра­те плюс 3x, зна­ме­на­тель: 2 конец дроби боль­ше дробь: чис­ли­тель: 1 минус 5x в квад­ра­те , зна­ме­на­тель: 5 конец дроби

яв­ля­ет­ся про­ме­жу­ток:

1)  левая круг­лая скоб­ка 6; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 6; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |7x минус 22| минус |5x минус 14|, зна­ме­на­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

16.  
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant3.

1) x при­над­ле­жит левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка
3) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 3; 3 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5) x_1= минус 3, x_2=3
17.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те плюс 4x плюс 4, зна­ме­на­тель: x в квад­ра­те плюс 2x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби
3)  дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 2 конец дроби
4)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 2 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 минус x конец дроби
18.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 2 конец дроби плюс 1= дробь: чис­ли­тель: 4, зна­ме­на­тель: x в квад­ра­те плюс 4x плюс 4 конец дроби .

19.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 4x=15 плюс 3y,4x минус 3y=6. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.

20.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 1,6,1 минус 2x мень­ше 9. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  

1) 1
2) 2
3) 3
4) 4
5) 5
21.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
2) 7k боль­ше 7t
3)  минус 7k мень­ше минус 7t
4) k боль­ше t
5)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 7 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 7 конец дроби
22.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 12 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 ко­рень из 3 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 ко­рень из 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 3 плюс ко­рень из 7 пра­вая круг­лая скоб­ка минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та .

23.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 5 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из 2 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс ко­рень из 2 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 6 ко­рень из 2 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус ко­рень из 2 конец дроби

1) 7
2) 11
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из 5 плюс ко­рень из 2 конец дроби
5)  дробь: чис­ли­тель: 2, зна­ме­на­тель: ко­рень из 5 минус ко­рень из 2 конец дроби
24.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 4 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 15 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 4 минус x конец ар­гу­мен­та .

25.  
i

За­пи­ши­те (5x)y в виде сте­пе­ни с ос­но­ва­ни­ем 5.

1) 5 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби пра­вая круг­лая скоб­ка
2) 5 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка
3) 5 в сте­пе­ни левая круг­лая скоб­ка 2xy пра­вая круг­лая скоб­ка
4) 5 в сте­пе­ни левая круг­лая скоб­ка xy пра­вая круг­лая скоб­ка
5) 5 в сте­пе­ни левая круг­лая скоб­ка 2x плюс 2y пра­вая круг­лая скоб­ка
26.  
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 64 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 4 в сте­пе­ни x плюс 15 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 64 пра­вая круг­лая скоб­ка =0.

27.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 44 пра­вая круг­лая скоб­ка умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка боль­ше 35 в сте­пе­ни левая круг­лая скоб­ка 2x минус 27 пра­вая круг­лая скоб­ка .

28.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 19 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 9,5 пра­вая круг­лая скоб­ка 19 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 19 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 19 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 19.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

29.  
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,6 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус 7x, зна­ме­на­тель: 4x минус 5 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус 7x пра­вая круг­лая скоб­ка \times левая круг­лая скоб­ка 4x минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:

1)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 2; 3 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка
30.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 13 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка x плюс 13 пра­вая круг­лая скоб­ка боль­ше 0.

31.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус t пра­вая круг­лая скоб­ка умно­жить на синус левая круг­лая скоб­ка t минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс t пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 5 Пи минус t пра­вая круг­лая скоб­ка конец дроби

1)  минус \ctg t
2) \ctg t
3)  минус тан­генс t
4)  тан­генс t
5) 1
32.  
i

Если  ко­си­нус левая круг­лая скоб­ка альфа плюс 12 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , зна­ме­на­тель: 5 конец дроби , 0 мень­ше альфа плюс 12 гра­ду­сов мень­ше 90 гра­ду­сов, то зна­че­ние вы­ра­же­ния 9 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка альфа плюс 57 гра­ду­сов пра­вая круг­лая скоб­ка равно ...

33.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния 5 синус 2x плюс 3 ко­си­нус 4x плюс 3=0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка .

34.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 64 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 16 конец дроби .

35.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 23 минус x пра­вая круг­лая скоб­ка боль­ше 79 равно ...

36.  
i

За­пи­ши­те фор­му­лу n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если даны ее пер­вые пять чле­нов: −10, −4, 2, 8, 14.

1) an = 6n − 16
2) an = −6n − 4
3) an = −14n + 4
4) an = 6n − 14
5) an = 6n + 16
37.  
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7 плюс 6x минус x в квад­ра­те пра­вая круг­лая скоб­ка .

38.  
i

Функ­ции за­да­ны фор­му­ла­ми:

1) y=|x| минус 1;2) y= минус 0,4x минус 1;3) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби ;
4) y= ло­га­рифм по ос­но­ва­нию 2 x;5) y=2 в сте­пе­ни x .

 

Вы­бе­ри­те функ­цию, гра­фик ко­то­рой имеет с гра­фи­ком функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка (см. рис.), за­дан­ной на про­ме­жут­ке [−5; 6], наи­боль­шее ко­ли­че­ство точек пе­ре­се­че­ния.

1) y=|x| минус 1
2) y= минус 0,4x минус 1
3) y= дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби
4) y= ло­га­рифм по ос­но­ва­нию 2 x
5) y=2 в сте­пе­ни x
39.  
i

В рам­ках акции «Книги  — детям» школа по­лу­чи­ла не­ко­то­рое ко­ли­че­ство книг, рас­пре­де­ле­ние ко­то­рых по руб­ри­кам по­ка­за­но на диа­грам­ме: «І»  — учеб­ни­ки и учеб­ные по­со­бия, «ІІ»  — ме­то­ди­че­ские по­со­бия, «ІІІ»  — на­уч­но-по­пу­ляр­ная ли­те­ра­ту­ра, «ІV»  — ху­до­же­ствен­ная ли­те­ра­ту­ра (см. рис.). Какое ко­ли­че­ство учеб­ни­ков и учеб­ных по­со­бий по­сту­пи­ло в школу, если книг на­уч­но-по­пу­ляр­ной те­ма­ти­ки и ме­то­ди­че­ских по­со­бий было 396?

1) 1406
2) 1396
3) 1200
4) 1126
5) 1026
40.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен ту­по­уголь­ный тре­уголь­ник ABC с вер­ши­на­ми в узлах сетки (см. рис.). Ко­си­нус угла ABC этого тре­уголь­ни­ка равен:

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
3)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
4)  минус дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
5)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 13 конец дроби
41.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 12x + c, равно −11. Тогда зна­че­ние c равно:

1) 47
2) −47
3) −119
4) 36
5) 25
42.  
i

Из пунк­тов A и B, рас­сто­я­ние между ко­то­ры­ми 130 км, од­но­вре­мен­но нав­стре­чу друг другу вы­еха­ли два ав­то­мо­би­ля с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми: из пунк­та A  — со ско­ро­стью a км/ч, из пунк­та B  — со ско­ро­стью b км/ч. Через не­ко­то­рое время ав­то­мо­би­ли встре­ти­лись. Со­ставь­те вы­ра­же­ние, опре­де­ля­ю­щее рас­сто­я­ние (в ки­ло­мет­рах) от пунк­та B до места встре­чи ав­то­мо­би­лей.

1)  дробь: чис­ли­тель: 130 левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка , зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 130, зна­ме­на­тель: a плюс b конец дроби
3)  дробь: чис­ли­тель: 130a, зна­ме­на­тель: a плюс b конец дроби
4)  дробь: чис­ли­тель: 130 левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка , зна­ме­на­тель: b конец дроби
5)  дробь: чис­ли­тель: 130b, зна­ме­на­тель: a плюс b конец дроби
43.  
i

Одна из сто­рон пря­мо­уголь­ни­ка на 7 см длин­нее дру­гой, а его пло­щадь равна 78 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:

1) x в квад­ра­те минус 78x плюс 7=0;
2) x в квад­ра­те минус 7x минус 78=0;
3) x в квад­ра­те плюс 7x плюс 78=0;
4) x в квад­ра­те плюс 7x минус 78=0;
5) x в квад­ра­те плюс 78x минус 7=0.
44.  
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость

фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)

Сто­и­мость до­став­ки

фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)

1250

1620

2265

850

3295

бес­плат­но
1) более 28
2) от 28 до 52
3) менее 52
4) от 15 до 30
5) от 29 до 51
45.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но точки O.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5